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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS
IX. THE DEFORMATION OF THIN SHELLS

By J. E. ADKINS anp R. S. RIVLIN
Davy Faraday Laboratory of the Royal Institution

(Communicated by E. N. da C. Andrade, F.R.S.—Received 18 September 1951)

The theory of the large elastic deformation of incompressible isotropic materials is applied to
problems involving thin shells. The inflation of a circular diaphragm of such a material is studied
in detail. It is found that the manner in which the extension ratios and curvatures vary in the
immediate neighbourhood of the pole of the inflated diaphragm can be determined analytically.
However, in order to determine their variation throughout the inflated diaphragm a method of
numerical integration has to be employed. Although this is, in principle, valid for any form of the
stored-energy function, the calculations are carried through only for the Mooney form.

Finally, the problem of the inflation of a spherical balloon, which has already been dealt with
by Green & Shield (1950), is discussed in further detail.
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1. INTRODUCTION

If a thin shell of elastic material is deformed so that the principal radii of curvature are
everywhere large compared with its thickness, then in setting up the equations of equili-
brium and boundary conditions for the shell we can neglect the variation of stress over its
thickness. The equations of equilibrium and boundary conditions then involve only the
stress-resultants and stress-couples acting at each point of the shell and the applied forces.

Such equations, usually expressed with reference to a set of curvilinear co-ordinates lying
in the middle surface of the deformed shell and along the normals to this surface, form the
basis of the classical theory of the deformation of thin shells in which the material itself is
considered to undergo only very small extensions along the principal directions. For a
highly elastic material, in which the principal extension ratios may be large, it is readlly
seen (§2) that similar equations apply. ,
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506 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

In the classical case, the stress-resultants and stress-couples can be expressed in terms of
the principal extensions and curvatures of the shell, employing the classical linear stress-
strain relations to describe the elastic properties of the material. For a highly elastic in-
compressible material, however, the expressions given by Rivlin (1948 ) for the components
of stress in terms of the principal extension ratios and the stored-energy function for the
material have to be employed in order to determine the stress-resultants.

In this paper, the inflation of a uniform circular diaphragm of incompressible highly
elastic material, isotropic in its undeformed state, and clamped round its circumference,
by a uniform pressure applied to one of its major surfaces is studied in detail. In this problem,
as in many others involving the deformation of highly elastic shells, the effects of the stress-
couples can be neglected in comparison with those of the stress-resultants, since the radii
of curvature of the deformed shell are large compared with its thickness and the principal
extension ratios are also large. This, and the fact that cylindrical symmetry is preserved in
the deformation, produces a considerable simplification in the problem.

It has not been found possible to determine analytically the state of deformation of the
diaphragm resulting from the application of a specified inflating pressure. However, if
the state of deformation, defined by the extension ratios and curvatures, is known at a point
of the diaphragm, then the manner in which these are changing at that point can be found
analytically, for any form of the stored-energy function. This enables us to calculate the
state of deformation at all points of the inflated diaphragm, by numerical integration, for
any specified state of deformation at the pole. From the latter, the corresponding value of
the inflating pressure is, of course, determined. The numerical integration may be carried
out for any form of the stored-energy function W, but the labour of computation is greatly
reduced if the Mooney form is employed. This is given by

W = C,(1;—3) +Cy(I,—3),
where I, and 7, are defined in terms of the principal extension ratios 4,, 4, and 4; by
I =23+2+4 and I, =A724+4324+432,
and C| and C, are physical constants for the material.

Even with this form for the stored-energy function, the computations are somewhat
laborious and so have been carried out only in the cases when C,/C; = 0 and 0-1. The
results of the calculations are discussed in relation to the measurements made by Treloar
(1944) on the inflation of a rubber diaphragm.

The method of solution that has been adopted could be employed (Adkins 1951), with
only slight modification, to solve a wide variety of problems on the deformation of highly
elastic shells in which both the undeformed body and the system of deforming forces have
cylindrical symmetry about a common axis.

In the final section of this paper, the theory has been applied to the relatively simple
problem of the inflation of a thin spherical shell. This has already been solved by Green &
Shield (1950) as the limiting case of the inflation of a thick spherical shell. Itis here discussed
in greater detail from the point of view of the dependence on the form of the stored-energy
function of the relation between inflating pressure and extent of inflation.

The results contained in this paper form part of a thesis approved by London University
for the degree of Ph.D. (Adkins 1951).
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 507

2. THE'EQ’UATIONS OF EQUILIBRIUM FOR A THIN SHEET

If a thin sheet of an elastic material is deformed, the position of any point on it may be
defined with reference to a set of orthogonal curvilinear co-ordinates (,#) which are such
that the curves a = const. and £ = const. lie on the deformed middle surface of the sheet.
Then the conditions for an element of the sheet situated at («, £) in the deformed state to be
in equilibrium are given (see, for example, Love 1927, § 331) by the six equations:

AT\ B) _9(S,4) _

(S B+1, Ty )+ (9, Ny B+¢, N, 4) + ABX = 0,

da ap
a(g:xB) +0(€§A) — (1 N\B+p, Ny ) + (r, T\ B—1,5,4) + ABY = 0,
d(N,B) , d(N;4
(. A ) 9 3 ) (9, T, B— 028, 4) + ($,S, B+, Ty A) + ABZ = 0, L e
d(H,B '
& )—a(ngL-(rlG,B—HszA)+(N2+L) AB—o,
NCB) | WA | (1. H,B—1,G,4)— (Ny—M) AB = 0,
o ap
(£1G1B+4,Gy4) — (9 Hy B—p, H, 4) + (S, +5,) AB = 0. J

In these equations the following notation is employed:
(i) A4 and B are defined by the equation

(05)2 = (4da)2+ (BIp)?, (2-2)

where ds denotes the length of the line joining the two adjacent points («, f) and
(a+ 82, f-+9).

z

B+

Ficure 1.

(i) Let (»,y,z) be a rectangular Cartesian co-ordinate system, having its origin at the
point (@,£) and its x- and y-axes tangential to the curves f = const. and « = const. respec-
tively and in the senses of increasing « and f respectively, while its z-axis is normal to the
deformed middle surface of the sheet, as shown in figure 1. Then — 7}, —S, and — N, are
the components, in the directions x, y and z respectively, of the resultant force, acting at
(«, £), per unit length of the curve @ = const. §,, — T, and — N, are the components, in the
directions x, y and z respectively, of that per unit length of the curve § = const.

66-2
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508 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

(ili) —H; and —G, are the components in the directions ¥ and y respectively of the
resultant couple, acting at («,/), per unit length of the curve « = const. G, and —H, are
analogously defined per unit length of the curve f = const.

(iv) py5 ¢4, 1, and py, ¢, 7, are defined by the relations

00, = p,0a—+p,0f, 60, = q,8a+q,0f and 0805 = r da+r7,05, (2-3)

where 86,, 00, and 80, are the components parallel to x, ¥ and z respectively of the angle
through which the co-ordinate system (x, y, z) must be rotated in order that the axes x and
y shall become parallel to the tangents at (x+oda,f+3dF) to the curves f = const. and
« = const. which pass through that point and the z-axis shall become parallel to the normal
at (a+da, f+f) to the deformed middle surface of the sheet.

(v) X, Y and Z are the components parallel to the x, y and z axes respectively of the
externally applied force, acting at («,£), measured per unit area of the deformed middle
surface of the sheet. L, M and 0 are the corresponding components of the externally
applied couple.

The following geometrical relations obtained by Codazzi (see Love 1927, § 322) apply:

d d )
%—% =17y 42715

d a
0_9/))1__6_9062 =11p3—"P1s (24)
dr, dr
75”562:?192—?291:
194 1dB
and n=map hmdm B4 (2)

If the orthogonal curvilinear co-ordinate system (a,f) is so chosen that the curves
« = const. and £ = const. are the lines of curvature of the deformed middle surface of the
sheet, then
’ g — 1__a 1 _bh :
p1_42“‘0 and Rl_ A’ Rz——B’ (26)

where R, and R, are the principal radii of curvature. Introducing (2-5) and (2:6), the
relations (2-4) become
AB 9 (1dB\ 4d (194
#or,~ 34225 %)
d(By 10B d(4y 144
7(w) 7w wlR) =R

(2-7)

THE INFLATION OF A CIRCULAR PLANE SHEET
3. STATEMENT OF THE PROBLEM

We shall consider a thin flat sheet of incompressible highly elastic material which is
isotropic in its undeformed state and has thickness 4. This is subjected to a uniform two-
dimensional extension in its own plane, in which the length of any linear element lying in
the plane of the sheet undergoes an extension ratio A,. The sheet is then clamped in a circular
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 509

clamp of radius 4, as shown in figure 24 and is inflated by a uniform pressure P applied to
one surface, so that it takes up a cylindrically symmetrical form such as that shown in
figure 2b. It will be apparent that, as a result of the inflation, each element of area of the
sheet undergoes further extension along two principal directions and that these directions
which are longitudinal and latitudinal in the deformed state are radial and azimuthal
respectively in the undeformed state. We shall denote the resultant extension ratios in these
two directions by 4, and A, respectively.

FIGure 2.

We choose a cylindrical polar co-ordinate system (p, 0, z), the z-axis of which is the axis
of symmetry of the deformed sheet. Then we can define any point on the deformed middle
surface of the sheet by its co-ordinates p and §. We can therefore take (p, §) as the orthogonal
curvilinear co-ordinate system (, #) in the equations of motion (2-1). In this case we have

A=d§{/dp and B=p, (3-1)
where £ is the length of arc measured along a line of longitude from the pole of the deformed
middle surface to the point (p, §).

From the symmetry of the system it is evident that

’ S =8 =N,=0
and G,=H,=0. }
It is also evident that the lines of curvature on the deformed middle surface are the lines of
longitude and latitude on that surface so that equations (2-6) and (2-7) apply to the problem
yielding, with (3-1), 1d¢ p

P =9=0, 41=_R‘1'a;a l’z"zﬁza
1 (dE\3  d2 d 1
redla) —a ™ ) x
In deriving these equations, we note, from the symmetry of the problem, that 4, B, £, R,
and R, are independent of g, i.e. 6.

Introducing (3-1) and (3-3) into (2+5) and employing these symmetry considerations,

we obtain

(3-2)

(3-3)

rn =0 and r2=‘l/g%. (3-4)

Furthermore, provided that £, the thickness of the sheet, is sufficiently small compared
with the radii of curvature R, and R, and the extension ratios A, and A, are sufficiently large,
we can put N,=0 and H =G, =0 (35)
in the equations of equilibrium (2-1).
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510 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC
Making the substitutions (3-1) to (8-5) in (2-1), we obtain from the first and third of
these equations d(Typ)
d/;” T, and &, T+, T, =P, (3-6)

respectively, where k; and «, denote 1/R, and 1/R, respectively. The remaining equations
of (2-1) are automatically satisfied. In carrying out this substitution we have introduced,
in accordance with the conditions of the problem, X =Y =0, Z=—Pand L = M = 0.
We have also employed the relation 97,/ = 0, which arises from considerations of
symmetry.

4. THE EXPRESSIONS FOR 1) AND T,

With the simplifying assumptions of § 3, we can calculate 7', and T, in terms of A; and 4,
for a thin sheet of incompressible highly elastic material which is isotropic in its undeformed
state.

For such a material, the stored-energy function W is a function of I; and I, given in
terms of the principal extension ratios 4,, A, and A5 by the relations

L=R+4+4 and L=+3+p (4:1)
1 2 3

where 2,45 = 1. (4-2)

For a pure homogeneous deformation of the material, the principal components of the
stress #;, t, and #; are given (Rivlin 19485) by

=28y —por)tt (=123, (+3)

where p is an arbitrary hydrostatic pressure. If the surface tractions on the major surfaces
of the sheet are zero, then ¢; = 0 and equations (4-3) yield, with (4-2),

d W W
h =204 ’1)(01 501)
(44)
oW oW
d by =2(A%— +43 .
an 2 ( 2 ) ( a I 1 a 12)
In the deformation, the initial thickness / of the sheet is changed to A3 4. From (4-4), we obtain
T, = Aght; — 20, h(X2—23) (az +Ag%§")
(4:5)
and T, = Ayht, — 2, h(3—3) (3W+A% ‘ZV)

Equations (4-5) will apply with sufficient accuracy to the problem defined in § 3, in spite
of the fact that the surface traction on one of the major surfaces is — P, since P is very small
compared with T and 7.

If the point of the middle surface of the sheet, which is at (p, 8, z) in the deformed state,
is at (r,0, 0) in the undeformed state, so that the undeformed sheet is flat, then we readily

see that
N=2 and 2,=2. (46)


http://rsta.royalsocietypublishing.org/

A A

JA '\

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATIONS OF ISOTROPIC MATERIALS. IX 511

5. THE CHANGE OF DEFORMATION IN THE NEIGHBOURHOOD
OF AN ARBITRARY POINT—TFIRST APPROXIMATION

If A, A,, &, and «, are known at any point which was at r in the undeformed state, then
their derivatives dA,/dr, dA,/dr, etc., can be found in terms of them and the values of A;, A,,
etc., at an adjacent point, which was at (r+ Ar) in the undeformed state, can be found to
a first approximation from relations of the type

[Arear = [u], A+ [dAy/dr], Ar. | (5:1)

The equations governing the deformation are (3-6) and the last two of equations (3:3).
These may be rewritten as d d .

a o
dr(Tlp) Tzdr’

d dp (5-2)
gy (Kep) =K1 g,
dpdad d?p
3 9pady a‘p
and Ky Ko A3 = O dr -4 EEL

In deriving the last of these equations, the first of the relations (4-6) must be employed.
The first and third of equations (5-2) yield

df; __1dp
dr — pdr

dk, _ 1dp
@~ pdr k)

(1'—-To)
(53)
and

From the last two of equations (3:3) or directly from geometrical considerations, it can
be shown that

Y :
a7, o
Since dp/dE = (dp/dr)/(d/dr), we have from (5-4) and the first of equations (4-6)
d .
a’;’:zll(l—/c%pz)*. (55)

With the second of equations (4-6), (5-5) yields
dp 242)4
a* = 4,(1—k33r7)t. (56)

Substituting in (5-3) from (5-6) (4-5) and (4-6), we obtain

drT, oW
—d?_’"’l'f‘(l A2 (i Az)(al +/I3'ZV)
(5:7)
and dey _ Al (1) ().

dr
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512 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC
Differentiating the second of equations (4:6) and substituting for dp/dr from (5-6),
we obtain dl, 1
G = L(1—=kgA3r)i—1,]. (5:8)

Differentiating the first of equations (4-5), we obtain

AT, _Foosia (%4 2207 4 arie PW L RW L PWN\TA
o ot =[ +3/1)( 231)+2(/11~ 2)2 (azz + 208 g7+ )]rla?
ow ow,
+|:(3/1§~/12) 14 + (A3 +43) o7 i, +2(43—A3) (A3—A3)
W o BW WA 0,
1312 U H) grar Hk 012} Ldr (5-9)

dT,/dr is given by an equation similar to (5-9) in which A; and A, are interchanged.

Since d 7;/dr is given by the first of equations (5-7) and dA,/dr by (5-8), we can calculate
da,/dr, from (59), in terms of A;, A,, k, and 7.

From this expression for dA,/dr and the expression (5-8) for dA,/dr, d7T,/dr can be cal-
culated by means of an expression similar to (5-9). Now differentiating the second of
equations (5-2), we obtain

dT dT dx dx
g teg Thig t g, =0 (510)

It has already been seen how expressions for d77/dr, dT,/dr and dk,/dr in terms of
;s Ay, Ky, k5 and 7 can be obtained. Thus, equation (5-10) provides a relation by means of
which such an expression can be obtained for d«,/dr.

If the stored-energy function W has the Mooney form, so that

W = Cy(I, —3) +Cy(I,—3), (5-11)

where C; and C, are physical constants, then the expressions (4:5) for 7 and 7, become

T, = 20, h(3—13) (C,+15C,) } (512)
and - Ty =205h(5—23) (C1+A1Cy).
From (5-9) and a similar equation for d 75/dr, we obtain the simpler expressions
2T [0+ 328) (Cy-+A3C1 2 T30 =40) Gy (49 0 32 g2
(513)
and L9 (03009 (G411 dm[(gaz —13) G+ (B+A3) A%czlj .

6. THE CHANGE OF DEFORMATION IN THE NEIGHBOURHOOD
OF AN ARBITRARY POINT—SECOND APPROXIMATION

If A;, A4, &, and &, are known at any point, which was at r in the undeformed state, then
their values at an adjacent point, which was at 7+ Ar in the undeformed state, can be found
to a second approximation from relations of the type

[Adysar = [A],+[dAy/dr], Ar+3[d?,/dr?], (Ar)?. (6:1)
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 513

It has been seen in § 5 how expressions for dA,/dr, dA,/dr, dk,/dr and d«,/dr in terms of A,, A,,
Kk, ky and 7 can be found. In this section it will be shown how expressions for d2/1l [dr?,
d2A,/dr?, d%k,/dr? and d2k,/dr? can be found in terms of these quantities.
Differentiating the second of equations (4-6) twice and each of equations (5-3) once,

we obtain respectively

2y & dl,

dr2 dr? dr’
d2T, d,o( dT, dT) d?

dz_ dr W__d? dr?

d%, dp/dk d/< d?
and Aot gz = df(drl drz) @ (= 12).

7 (T~ T) (6-2)

v

In these equations the second of the relations (4:6), p = A,7, has been used.
Differentiating equation (5-9) we obtain
LATy _ T z(i zi) 2_22(_‘_9_ ):I A3 4%
% dr [“l”’lﬂ') ar, T 8ar) TR A G+ ) (W ge

~[(/1 —33) 8[ — ) 32 a I

l —2(1—43) (3—A3) (31 +4t aal) (ai o )] W/Alzcgli
2[6/12( o + 13 (?al) 3(A3—23) (A3+34%) ((% + 43 B_%)z

— 2 —A)° (aI +43 al) ] WAZ (di)

02
o (41— 643) 37 M8 7+ (5K -+ 51— 048) —1143)

2
{6 —3) +A4(3/12+/1§) A0+ 513)} 5 1? T

+ (A3 +A3—523+ 32444 ) 312

+208-29) -2 (5743 57) (s +2857) | R (55)

a d 72
—2[(Ag‘+mg)9—]—1-—a —328) 8 57+ 23— 13— 519 (3 —849)} 5
—2(A2+312) P33 — 3A2) + B(3— D)} e

(A3 +343) {A5(A3 5)+A%( 3)}3113]2

+2{AF — A3+ 313 —A3(44 )}312

o 0\2( 0 da, dd
o gy Gt o

d2T,/dr? is given by a similar expression in which A, and 1, are interchanged.

Vor. 244. A. 67
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514 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC
Again, differentiatihg equation (5-10), we obtain

2
d%q, 2dKldT1 dTl+T2(:}il<22+2 I

dszTz d7,
2

(64)

2172‘—‘7’ dr dr K1 ge ar

d2 T:I
In § 5 it has been seen that the first derivatives of p, A;, A5, &1, k5, T and T, can be expressed
interms of A, A5, k;, K, and 7. From the last of equations (5-2), d?p/dr? can be expressed in terms
of these quantities, and thus, from (6-2) d2A,/dr2, d2T}/dr2 and d2«,/ds? can be so expressed.
From (6-3) an expression in terms of A;, A,, etc., can be obtained for d?1,/d?, and from the
expression for d27,/dr?, analogous with (6-3) and equation (6-4), an expression for d%,/dr?
in terms of A,, 4,, etc., can be obtained.

It is evident that by continued differentiation of equations (5-2), (4-5) and the second
of (4-6) we may obtain expressions for the third and higher order derivatives of A,, A,, &, 5,
T,, T, and p, and by taking additional terms of the Taylor series obtain more accurate
expressions for the quantities A,, A,, k; and «, at the point (r+4 Ar).

If the stored-energy function W has the Mooney form (5-11), then equation (6-3) yields
the much simpler expression ’

A5 d2A,

1427, 2 9 9 A3 d2A,
2}2 d 2 [(’1 +3’1 ) (Cl"'/IZCZ)] /11 drz
3 2
LB o (§+43) 4G, 190, 4 B (%)
2] — (R+0A) €, + (5 — 343) ;] 1§ o M
o[22 —612) Cy—C,] (T;) . (6-5)
In a similar manner we obtain
1 d2T. A3d2A,
3y e = [+ 31) (€1 G P
I €t (-2 861 P S —1203(C + 1860 3 (5
o[~ (Y 98) G A3 —38) Gl i S e
' ddy)\? |
+ 28— 643) €, — i) () - (6-6)

7. THE DEFORMATION IN THE NEIGHBOURHOOD OF THE POLE
At the pole, we see from symmetry that
Ky =Ky =k (say), A, =2A,=2A (say) and T,= T,=T (say). (7-1)
From (4-5) we have, at the pole,

T = 24{1—) (‘ZV “Z‘ZV ):

where o 11=2/l2+1;1 and I,= /12—{—/14 (7-2)
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 515
From the second of equations (5-2) we have
P

From considerations of symmetry, we see that ,, s, 4;, 45, T} and T, must be even
functions of  and that p must be an odd function of 7, so that, at the pole,

de¢; dk, dA; dA, dT7T, dT,

& d T A
(7-4)
d2p
and W = 0.
We have also, at the pole, F = A (7-5)

d?d,/dr?, d?,/dr?, etc., cannot be determined at the pole by the relations of § 6, since
equations (6-2) vanish identically if the conditions (7-1), (7-4) and r = 0, which apply there,
are introduced. They may, however, be obtained in the following manner.

Differentiating the first of equations (5-2) twice with respect to 7, writing p = 0 and
introducing the relations (7-4) and (7-1), we obtain at the pole
d27, d2T, '

drz = dr?2”

In a similar manner we see, from the third of equations (5-2), that at the pole

d%, d%
3@ =@ (77)

From (6-4), (7-1), (7-4), (7-6) and (7-7) we obtain

3 (7-6)

’a“;?"{"/f'a;z— = 0. (7'8)

Differentiating the last of equations (5-2) with respect to r and introducing the relations
(7-1), (7-4) and (7-5), we obtain at the pole, where r = 0,

d3 d2

aﬁ ——'CT;EI = '—K2/13. | (7'9)
Again, differentiating the second of equations (4:6) thrice with respect to 7, we obtain at
the pole, where 7 = 0, 43 dz1
=3 (7-10)
Equations (7-9) and (7-10) yield 9 9
391_./{_2_.% = —x2]3. (7.11)
ds2  dr?
Introducing into (6-3) the relations (7-4) and (7-1) we obtain at the pole
1 d2T, 9 W |, 0W\ 1.d%,
T +,14)(01 A3, ) e
IWT1 dA,
4
a o ) ) 7, o, [T ar
2 6 d d2A, | d2A,)
2_ —_ 2 (=1 =2 .
+2(d ,14) (011“ alz) Woa(Gat ) (7:12)

T 672
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516 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

Similarly, we can obtain

1 d27, (/12 /14) (awﬂzaw) 1.d2,

2h dr? ol oL, ) 3 dr*
| Iw71d2,
22 4
+[ (- A)é?[ ) o s
1 . d?y, | d%, )
+2(az— F) ( +A ) W (Gt + 52 (7-13)
Introducing the expressions (7-12) and (7-13) into (7-6), we obtain at the pole

aw d2A, dza, LW a2, dz/l
5]7 (2+/—16)H72—_(2—/1) d72:|+/1 (l+,16) dr2 + drz

d2A,  d%,)\ (0 d
(i) (G + ) (o7 “231) W=0o. (714)
Solving equations (7-14) and (7-11) for the values of d2A;/d»? and d2A,/dr? at the pole, we
obtain
ow 3 ow 1)\2
e, ¥ G (23) 2 L, —20(1- ) 4]
drr ow oW ) 1
(1+3) (al ey ) +222(1 Aﬁ) 4
7-15
e (o4 )i ) W (e 1y e
and da»n, ¢ 01 A8 A8/ 91 A8
drz oW oW ) 1)\2 ’
(1) G, +25r, ) 200 4
2w 2w >zw
where 4= FIE + 242 FIRIA +A* i (7-18)

From these expressions for d?A,/dr? and d2A,/dr?, d277/dr? can be found by means of equa-
tion (7:12). We obtain

mfcuz[% (QV—V)2+ (1+ o+ Alz) 22 ZZZ(ZV
L@, e e (14 0) ((ZV) a1 /16) ((392/ ﬂl‘f?azf) 4]
E N [ A TR R

Equations (7-6) to (7-8) then yield expressions for d27,/dr?, d%,/dr? and d2%,/dr2.

Since dA,/dr = dA,/dr = 0, the values of d?,/dr? and d?4,/dr? determine the shapes in the
neighbourhood of the pole of the A, against 7 and A, against r curves respectively. We bear
in mind that A; = A, = A at the pole (i.e. when 7 = 0), so that if the two curves are plotted
on a single graph they have a common point where 7 = 0. We shall consider the forms of
the two curves in the neighbourhood of this point.

If the highly elastic material considered is an incompressible, neo-Hookean material,
so that W is given (Rivlin 19484) by

W=C(,—-3), (7-18)
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 517

where C'is a constant, equations (7-15) become

3
ey _%K?AS(Q*F)
2 3
dr 1 + |
" (7-19)
and dr22 =— -
e )

A is always greater than unity for the type of deformation envisaged. When 1< §, we see
that d24,/dr? is positive and d2A,/ds? is negative, so that in the neighbourhood of 7 = 0, A,
increases and A, decreases as 7 increases. When 15> 3, d2A,/dr? and d?4,/d7? are both negative,
so that, in the immediate neighbourhood of the pole, both A, and A, decrease with increase
of r. When 1°> %, d21,/ds? and d21,/dr? become nearly equal. In practical cases for which
it is permissible to neglect the couples G, and H, so that the basic equations of the theory
are valid, we will generally be concerned with values of A such that 15> 3.

We shall now consider the case when W has the Mooney form given by

W= Cy(1,—3) +Cy(l,—3), (7-20)

where C; and C, are positive constants. Then equations (7-15) become

A

3 /1‘1 - %K2/13[(2 - %) C,— ,1202]
drz (1 +%) (C,+A2C,)
. ' . | (7-21)
i, vffee)ocrfit)e] ~
- (1+3) (€ +22c)

J

We see that whereas d?,/ds? is always negative, as in the case of an incompressible neo--
Hookean material, d?A,/dr? is positive for values of A< $, may then become negative for
larger values of A provided that C,/C is sufficiently small and becomes positive again for
still greater values of A.

The presence in the expression for the stored-energy function W of terms of higher degree
than the first in (/;—3) and (I,—3) may have a profound effect on the values of d2,/dr?
and d?1,/dr?, even though their coefficients are small compared with those of the first degree
terms. This can be seen by noting that for large values of A, the terms involving 32W/dI2 in_
the expressions (7:15) for d?,/dr? and d2A,/dr? are multiplied by 24% and the terms in
02W|d1, 01, by 4A*. A non-zero value for d2W[d1} or 32W[dI, I, will therefore have the effect
of making the terms contained in 4 the controlling terms in determining the values of
d?4,/dr? and d?4,/dr? when A is very large, giving positive and negative values for d2A,/dr?
and d?4,/dr? respectively for such values of 1, these values becoming approximately equal in
magnitude for sufficiently large values of A. Similar considerations apply to d27',/dr2.
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518 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

From equations (7-12) and (7-14) we may write d27;/dr? in the form

AT, 2h(dR, d,) (W 1 0W
@ =7 (er HrT) ('ﬂ?"”ﬂﬁfg)‘ (7-22)
With equation (7-8) this yields
Td, 2k (%, 2\ @OW 1JW
£ dr = A (drz drz)(ﬁfﬁﬁm)' (7-23)

From (7-23) we should expect that for given values of 7" and «, d%;,/dr? would be most
nearly zero when d?,/dr?> and d?1,/dr? are of the same sign and approximately equal.
This situation arises in the case of the incompressible neo-Hookean material when A is
large. The smaller d%,/dr?, the larger will be the region in the neighbourhood of the pole
of the inflated sheet that is substantially spherical.

It is evident that by continued differentiations of (5:2), (4-5) and the second of equations
(4-6) and the introduction of the symmetry conditions at the pole we may derive expressions
for the fourth and higher order derivatives of 4, 4,, «;, k5, 77 and T,. If the material has
the neo-Hookean form of stored-energy function, the expressions for the fourth derivatives
assume reasonably simple forms (Adkins 1951), but for more general forms of W the expres-

sions become extremely cumbersome.

8. DEFORMATION NEAR THE EQUATOR

At the equator dp/dr = 0. With the second of equations (4-6), this yields

dA A
& (8:1)
With (5-8), (8-1) yields Kodor = 1. (8-2)
Introducing dp/dr — 0 and the relation (8-2) into the first, third and last of equations (5-2),
they yield ‘ 9 7
%%11 =0, %’% =0 and %—rg = —K, A} (8-3)
respectively. : |
From (59), (8-1) and the first of equations (8:3), we obtain
A aw ow
Sen-1 o 4G
2w 2w 2w
a +208=2) =19 {5 + 0429 y737 + 85 || o
ar N oW oW Y s (W PW W - (84
p+38) (7, +4 5, ) +208—)* (G + 2707 +4 5 )

Substituting from (8-1) and (8-4) for dA,/dr and dA,/dr respectively in the expression for
dT,/dr similar to (5-9), we can obtain d 7%/dr in terms of 4; and 4,.
Also, from equations (5'10), (8-2) and (8-3), we obtain

de, 1 dT,

A = T ar (8:3)
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX 519

Since it has already been seen how 7', and d 7,/dr can be expressed in terms of ;, A, and 7,
-(8-5) enables us to express dk;/dr in these terms.

Having seen how the first derivatives of A;, Ay, ;, kg, T and T, at the equator of the
inflated sheet can be expressed in terms of A,, A, and 7, we now proceed to obtain expressions
for the second derivatives in terms of A;, 4,, 7 and «;.

Introducing dp/dr = 0 and the relations (8-3) and (8:1) into equations (6-2), we obtain

d2A, _ 2/12_/<l A3 )
dr? 72 r ’ -
2T, «A2,..
a7 =y (T (8+6)
dZk Kk, A2
and _d—772 = "—712—;‘ (Kl*—l('z).J

© d2A,/dr? can be obtained from the expression (6-3) for d27; /drr2 and the first two of equations
(86). d2T,/dr? can then be found from the expression for it analogous with (6:3) and these
expressions for d21,/dr? and d24,/dr2.
Introducing the expressions (8-3) into (6-4), we obtain
d*, 1 ( d?T; d%*,  d2T,
ane = ‘:Fl("l a2 T Tege Tk drz)’
which together with the expressions for d2 T, /dr?, d%,/dr? and d?T,/dr?, found in the manner
described, yields an expression for d%,/dr2.
If the stored-energy function W has the Mooney form (7-20), then equation (8-4) yields
dA, _ A4 [C(33—A) 4 C,A3(A3 +43) ]
dr r(A3+343) (C1+43C,)

(87)

(8-8)

9. THE NUMERICAL SOLUTION OF THE PROBLEM

In the previous sections, relations have been derived by which the values of 4, A,, &,
and «, at any point of the inflated sheet, initially at -+ Ar, can be calculated if their values
are known at a point initially at 7. This calculation may be carried out, in principle, for any
known form of the stored-energy function. Itis, however, very much simplified if the stored-
energy function W takes the Mooney form given by equation (5-11). The steps in the
calculation may be summarized for this case, A, 4,, k¥, and &, being considered known for
a given value of .

Employing the notation 7= T,/2kC,, Ty = T,/2hC, and I' = C,/C,, we obtain:

(1) A3 = 1/A, 233

(2) T = ,(A3—=23) (1+A3T), from (5-12);
(3) T, =2(23—-23) (14+431), from (5-12);
(4) p= A, from (4-6);
(5) dp/dr = A,(1 —«3p?)1, from (5-5);

d, 1/dp -
(6) a—_;(a;—az), from (4+6);
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520 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC
de, 1d
(7) HKf = ;ai; (k1 —Ky), from (5-3);
a7, 1dp s e
® &= L(ri-1), from (5:3);
o B y(sg—a+ g+ BT ASC“
(9) “d_rl = , from (5-13);
(2-+322) (1+13T) f
a0 o graga +A2r)]4-3@—+ [(32 —13) + (B+2) /121‘]—-—3—!

from (5-13);

11 4 , rom (5°10);
do _ dTl PREANE s !
Cdp 1 (dpd),
(12) anr T (d/: dr 1K2P’1) from (5-2);
a2, 1(d% _dl 2
(13) Hﬁ“?(ﬁﬁ”‘gd_f)’ from (6-2);
d%, 1 de;  dky\dp o).
(14) dr? = [(Kl k) d 2+(dr dr)dr from (6-2);
dZT’_ ’ ’ dﬂ dT’ C.[th dp . .
(15) dr2 “‘"‘_[(T T +( “dr  dr )a; ’ from (6 2)’
&7y
e Th_A4__ dr ¢
a7 T L, G 5
where &= [(3—A)+ (43 +13) 33T ﬁ%" —12(1+40)5, wla)
2 (§+9) -+ 145 —3) T 50 2
. . ) 2
+203[A3(A2—643) —T'] (dd—lf) , from (6-5);
4277 : A3d2A |
(17) g’ = [(5+38) L+ 1)1 P 57
| A, d%, A (d,
HIGE-B) + B+ AT 5 1212(1“21‘) 2 (g“)
2l (13-4 903) + 4303 —33) I 1 S
+ 20343 — 613) — P]( ) from (6-6);

d%, 1 [ dedT] A7) ..,d%, . dedTy dZT':l .
‘(18) odrr T T{[2dr clr—t~ 1 dyr2 + T dr? +2dr dr Th dr? from (6-4).
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DEFORMATIONS OF ISOTROPIC MATERIALS. IX - 521

By means of this scheme, the values of the first and second derivatives of A,, A,, k; and &,
can be calculated at the point 7. Then, their values at the point (r+ Ar) can be calculated
approximately by formulae of the type

v, = T+ [ ] a3 [ ] (@02 (9:1)

The values so obtained for [4,],+a €tc., can be made as accurate as desired by making Ar
sufficiently small.

If the values of A (= A, = A,) and « (= k; = «,) at the pole of the inflated sheet (where
r = 0) are known or assumed, then by successive application of the formulae, the values of
A, A5, k; and &, can be calculated for all values of r. This calculation has been carried out
for values of 1 of 1-5, 3-0, 4-5 and 6-0 employing values of the ratio I'in the Mooney form for
the stored-energy function of 0 and 0-1. The values of A, and A, obtained are given in tables
1 and 2. k¥ may be given any value in arbitrary units without any loss in generality in the
solution. p and r are, of course, measured in units corresponding to those of .. In the calcu-
lations the following values were given to « for reasons of arithmetical convenience: k = 0-1
when A = 4-5 or 6:0; k = 0:2 when A = 3-0; and « = 0-3 when A = 1-5.

TaBLE 1. CALCULATED VALUES OF ; AND A, FOR ['=0

A=1-5, k=03 =30, k=02 =45, k=01 A=6-0, k=0-1

e e e e, A e e

r A, X A 2, A, A, A 2
0 1-5000  1-5000  3-0000  3-0000 45000 45000  6-0000  6-0000
0-4 14918 1-4892  2:9577 29575 44639 44639  5:9140  5:9149
08 1-4682 14574  2:8377 28369  4-3590 43589  5-6732 56732
1-2 144327 14065  2-6577  2:6554 41942 41941 53112  5-3112
16 1-3906  1-3391 24415 24373 39829  3.9825  4-8756  4-8753
20 13482 1.2578  2:2143 22031 37406 37401  4-4106  4-4102
24 13127 11643  1.9954 19726 34820  3-4810  3-9507  3-9500
28 1-2916  1-0588 17992 17545  3-2203 32185  3-5181  3:5166

30026 12893  1-0000 — — — — — —
32 1-6365  1-5542  2:9641 29610 31248  3-1218
36 15148 1-3713 27202 27149 27756 2:7699
40 144367  1.2048 24934 24845 24717  2:4601
44 1-4008  1-0509  2:2861 22714 22095  2-1891

4-5376 13977 10000 — — —

2-0760 1-9884 1-9528

'S
@
%
(=1
[N=}
o
=]

52 1-9353 1-8979 1-8067 1-7468
56 17939 1-7360 1-6634 1-5659
6-0 1-6759 1-5890 1-5568 1-4060
6-4 1-5816 1-4551 1-4844 1-2636
6-8 1-5102 1-3326 1-4422 1-1347
72 1-4604 1-2196 1-4261 1-0163
7-2576 — — 1-4258 1-0000
7-6 1-4303 1-1145

80 1-4181 1-0157

80653 1-4176 1-0000

The solutions to a number of different problems can be obtained from tables 1 and 2.

For example, suppose the diaphragm to be clamped in its undeformed state on a circle
atr = lcm (say). Then, when r = 1 cm, A, = 1. We must choose the units of 7, p and « in
the tables in such a way that this boundary condition is satisfied. For example, in the case
when A = 6:0 and I" = 0, we see from table 1 that 4, = 1 when r = 7:2576 units. Thus, we

VoL. 244. A. ‘ 68
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522 - J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

have to choose, as the unit for r, 013779 (= 1/7-2576) cm. In a similar way we can deter-
mine in cm the value of the unit which is appropriate to each of the other cases. Having so
determined the value of the unit in each case, we can obtain from the tables the dependence
of A, and 4, on r appropriate to the problem under consideration. These results are plotted
in figures 38 and 4.

TaBLE 2. CALCULATED VALUES OF A; AND A, FOR ['=0-1

A=15, k=03 A=30, k=02 A=4-5; k=0-1 A=6-0, k=0-1
e e e A e, A, A e,
r X, X A X, A, A X X,
0 1-5000 1-5000 3-0000 3-0000 4-5000 4-5000 6-0000 6-0000
0-4 1-4941 1-4899 2-9875 2-9671 4-5001 4-4757 6-0151 5-9473
0-8 1-4770 1-4601 2-9494 2-8693 4-5005 4-4028 6-0621 5-7878
1-2 1-4504 1-4116 2-8836 2-7092 4-5008 4-2806 6-1454 5:5168
1-6 1-4173 1-3456 2-7868 2-4922 4-5005 4-1085 6-2745 5-1263
2-0 1-3822 1-2639 2-6566 2-2278 4-4985 3-8857 6-4636 4-6046
24 1-3514 1-1675 2-4938 1-9302 4-4931 3-6116 6-7336 3-9347
2-8 1-3330 1-0566 2-3077 1-6186 4-4810 32865 7-0863 3-1170
2-9845 1-3318 1-0000 — — — — — —
32 2-1211 1-3112 4-4567 2-9126 7-4587 2-1644
36 1-9740 1-0274 4-4089 2-5029 7-5452 1-1749
3-6409 1-9635 1-0000 — — — —
3-6757 — — 7-4795 1-0000
4-0 4-3278 2-0678
4-4 4-2019 1-6262
4-8 4-0300 1-2077
5-0150 3-9244 1-0000

In figures 5 and 6, «; and «, are plotted against 7 and in figures 7 and 8 77 and 7T, are
plotted against 7. It will be noticed from figures 5 and 6 that the variations of «, throughout
the sheet are less for the neo-Hookean material, for which I' = 0, than for the material for
which I' = 0-1, i.e. the shape of the deformed sheet is more nearly spherical in the former
than in the latter case, particularly for high degrees of inflation.

From figures 7 and 8 we observe that whereas 77, falls steadily as we progress outwards
from the pole, 77 falls slightly between the pole and the equator and then commences to
rise again near the edge of the sheet, the rise being more pronounced for the higher degrees
of inflation. The assumption made by Flint & Naunton (1937) that 77 is approximately
constant throughout the sheet applies fairly well over quite a large area, particularly for
materials for which the neo-Hookean form of stored-energy function is appropriate.

We shall suppose that the position of a point on the inflated diaphragm, which is at a
radial distance 7 from its centre in its undeformed state, is specified by its radial distance p
from the axis of symmetry and its distance { from the pole of the inflated sheet, measured
parallel to this axis. Then, the shape of the deformed body may be described by a relatjon

between { and p. Since
(6) = (@) + () (o2

from (5:5) and the first of equations (4:6), we obtain

d¢

a‘; =K2/llp. (9'3)
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o Ficure 3. Calculated A, —7 and A, —rcurves Ficure 4. Calculated A, —7 and A,—r
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linesk,—7. [, A=1-5;I1,A=8-0; III, A =4-5; and broken lines k,—7. I, A=1-5; II,
IV, A=6-0. ‘ A=3-0; III, A=4-5; IV, A=6-0.
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Differentiating this expression, we obtain
d¥  , d, dp da, )
2= /11,_05 + Ky, 3 TRl (9-4)

Employing the relations (’9-3) and (9-4), d{/dr and d?{/dr? can be calculated at each point
of the deformed body, and by means of the relation

d 1[d?
[€lear = [0+ [ 3] Ar+3[ 5 ] (9%
{ can be calculated at successive points, bearing in mind that { = 0 when 7 = 0.

8-0

12

0-2 I l | I I I 1
0 0-2 0-4 0-6 0-8 1:0 0 0-2 0-4 06 0-8 1-0
r r
Ficure 7. Qalculated 77 —r and T5—r curves Ficure 8. Calculated 7{—r and T4—r
for I'=0. Full lines give 77 —r and broken curves for I' =0-1. Full lines give 77 —r
lines 75 —7r. I,A=1-5; I1,A=3-0; II], A = 4-5; and broken lines T5—r. I, A =1-5;
IV, A=6-0. II, A=3-0; III, A=4-5; IV, A=6-0.

In this manner, the forms assumed by the deformed body have been calculated on the
assumption that the stored-energy function for the material has the Mooney form with
I' = 0 and 0-1 and for extension ratios A at the pole of magnitude 1-5, 3-0, 4-5 and 6-0. The
axial cross-sections obtained are shown in figures 9 and 10. The axial cross-sections obtained
experimentally by Treloar (1944) are also shown in figure 10 for purposes of comparison.

In carrying out the calculations, the values of Ar must, of course, be chosen so that
adequate accuracy is obtained without excessively increasing the labour involved in the
computation. Provided that the computation is carried out to a sufficient number of
significant figures, the errors introduced in each stage of the numerical integration arise
from the neglect in equation (9-1) of terms of higher degree than the second in Ar and from
inaccuracies in the values of [dA,/dr], and [d?A,/dr?], arising from such neglect at earlier
stages of the integration. It is thus seen that the error introduced at each stage of the
integration will tend to increase as the integration proceeds, due to the cumulative effect
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of the errors introduced at the earlier stages (i.e. near the pole). It is therefore desirable to
employ smaller values of Ar near the pole than are appropriate at later stages of the calcula-
tion. With the values of x employed, it was found desirable to employ a value of Ar = 0-1
near the pole, while values of two and three times this amount were used at the higher
value of 7.

j\Y

L 1 ]

2 1 0 1 2

FIGURE 9. Profiles of inflated sheet calculated for T'=0.
I, A=1-5; II, A=38-0; III, A=4-5; IV, A=6:0.

Ficure 10. Profiles of inflated sheet calculated for I'=0-1 (full lines) and obtained by Treloar
experimentally (broken lines). I, A=1-5; II, A=3-0; III, A=4-5; IV, 1=6-0; I', A =1-49;
II’, A=3-36; III', A=4-7; IV’, A=5-35; V', A=5-9. ’

Some estimate of the magnitude of the error introduced at any stage of the numerical
integration, by the neglect in the expressions of the type (9-1) of terms of higher degree than
the second in Ar, may be obtained in the following manner. Suppose, for example, we
are concerned with the error introduced in calculating [A,],.a, from the solution at the
point 7. We calculate the value of [1;],,,a, in a single stage of numerical integration using
the interval 2Ar and compare it with the value obtained by two stages of numerical integra-
tion using intervals Ar. It was found that the difference between the values of [A,], .94, — [4;],
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calculated by these two methods were always less than 0-1 9%,. Since the errors introduced
in each stage of the integration tend to zero as Ar decreases, it may be concluded that the
errors introduced in each stage of the integration by the neglect, in that stage, of terms of
higher degree in Ar than the second in equation (9-1) are less than 0-1 % of [4,],,4,— [4],-
Similar considerations were found to apply to A,, «; and «,. If the errors introduced in each
stage of the calculation had no effect on succeeding stages then the calculated values of
A, —2, A, — A, k;—«k and k,—k would be in error by about 0-1 %, over the whole sheet. Owing
to the cumulative effect of the errors, the resultant errors in these quantities will be con-
siderably greater, particularly for the larger values of 7, but it is estimated that they should

not exceed 2 %,

10. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

It will be observed from a comparison of figures 3 and 4 that the deformation obtained
is very sensitive to variations in the stored-energy function W and that the shape of the
A, —7 curves are more dependent upon the value of I' than are those of the 1,—r curves.

Treloar (1944) has measured the values of A; and A, over the surface of an inflated dia-
phragm of natural rubber for various degrees of inflation. The values he obtained for 4,
and A, are plotted against 7 in figure 11 and may be compared directly with our calculated
values. It is seen that the curves of figure 4, calculated on the assumption of a Mooney
form for the stored-energy function, with I' = 0-1, agree more closely with Treloar’s results
than do those of figure 3 which assume that the material is neo-Hookean (i.e. I' = 0).
There are, however, appreciable disparities between the curves of figures 4 and 11. These
may be explained to some extent in terms of the known departure of the stored-energy func-
tion of a natural rubber vulcanizate from the Mooney form assumed in calculating the
curves of figure 4.

Rivlin & Saunders (1951) have found, for a particular pure gum vulcanizate, that the
stored-energy function W is such that dW/dI, is substantially independent of /; and I,
while dW/01, is independent of I; and decreases as /, increases. For small deformations,
where 1, is little greater than 3, (dW/dL,)/(dW/d1,) is about 0-25 and falls steadily as I,
increases, reaching a value of about 0-05 at [, = 30. For values of I, between about 30 and
120, (dW/d1,)/(0W[d1,) lies between 0-05 and 0-03.

Although these results were obtained for a particular vulcanizate, there are strong
indications that the form of W is not very sensitive to variations in the vulcanizate, so that
it is to be expected that the general character of the variation of W with I; and I, obtained
from the experiments of Rivlin & Saunders will be applicable to the vulcanizate used in
Treloar’s experiment.

For the type of deformation considered, /; and I, vary considerably over the surface of
the sheet in any state of inflation and are highly dependent on the state of inflation. This
can be seen from table 3, in which the values of 7, and I, are given for various values of 7.
These are obtained from equations (4-1) and (4-2) using the values of A; and A, obtained
by Treloar experimentally.

Comparing the curves for which A = 1-5 (1:49 in the experimental case), we see that the
A,—r curves calculated for I' = 0 and I' = 0-1 are nearly identical with each other and with
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the experimental curve. Again, within experimental error, Treloar’s A; —r curve for 4 = 1-49
agrees with the calculated A;—7 curve for A = 1-50 and I' = 0-1. The latter is only very
slightly above the corresponding curve for I" = 0. The insensitivity of the calculated curves
to the value of I'is in accord with the agreement of the experimental and calculated curves,

4-0

8-0

A, and A,

7 A
Ficure 11. A, —r and A,—7 curves obtained FiGure 12. Variation of inflating pressure with
experimentally by Treloar. Full lines give degree of inflation for spherical balloon. I, I'=0;
A, —r and broken lines A, —~7. I'=0-1; III, T'=0-5; IV, T varying in the
manner obtained experimentally by Rivlin &
Saunders.

TABLE 3. VALUEs OF [} AND [, IN TRELOAR’S EXPERIMENTAL RESULTS

A=1-49 A=3-36 A=417 A=535 - A=59 A=67
A . A e e, A e N |
7 1, 1, I I, I I, I, I, L I, I, I,
0 464 583 226 1276 442 488 57-2 819 696 1212 89-8 2015
01 461 579 225 1261 432 465 57-1 816 69-7 1216 90-2 2033
02 453 560 208 1077 397 393 56:3 790 69-7 1210 91-8 2106
0-3 445 543 168 709 338 284 52:6 682 689 1164 892 1969
04 438 524 131 369 26-3 170 452 490 65-9 1025 854 1759
05 426 500 89 199 185 84 36-0 299 61-1 827 795 1436
06 411 470 6-5 109 114 32 26-3 149 54-4 597 72-2 1053
07 394 436 5-1 7-0 7-4 14 17-4 63 47-2 383 64-2 670
08 374 399 4-2 4-9 54 7-56 104 23 39-9 201 556 337
09 356 3-68 37 39 4-2 4-7 6-8 92 334 81 48-1 138
1-0 337 337 35 35 37 37 54 54 286 286 416 41-6
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in spite of the variation of /, and the consequent variation of (dW/dl,)/(dW/d1,) over the
deformed sheet.

For the higher values of A, it is not possible to discuss the disparities between the experi-
mental and calculated curves in this manner owing to the absence of adequate information
on the manner in which dW/dl, and dW/dl, behave for the relevant values of I, and 7,.
However, it is possible to discuss the general behaviour of the experimental curves in the
neighbourhood of 7 = 0 in terms of the formulae for d?A,/d7? and d2A,/dr? at r = 0 obtained
in § 7 even in"the absence of such detailed information.

For A = 1-49, we have at r = 0, from (7-15),

a2, -%/<2,13[1.73‘7 2 22‘;?’/ 566 A]
v 1'27(???V+2 22(3;?/)+3-66A ’
d2, _ “‘%"2’13[2'27 (37?/4—3 03 ‘Zﬁ 3664 [ (101)
d? 27(‘3??/+ 2 22(39?/)-%3'66/1 ,
where A= 30}/;/+4 44 8???;24'4 93 6(”[/21/.

Atr =0, I, =5-83 (from table 3). From the results of Rivlin & Saunders,
2W[ol} = ?W[ol,dl, =0 and (dW/[dL,)[(dW]dl,)~ 0-13

at I, = 5-83, while (9?W/013)[(dW[d],)~ —4x 1073. We see that in this case the con-
tribution of 4 to the values of d?,/dr? and d?4,/dr? will be small and equations (10-1) yield
approximately

a4, _ —0-24¢21* and i, _ —0-41x243

dr? dr? ‘ ’
The A, —r and A, —r curves should both be concave to the r-axis at r = 0, A, falling approxi-
mately twice as fast as A, as r increases from 0. It is seen from figure 11 that this is in agree-
ment with the experimental result.

For A = 3-36, we have, atr = 0,

2)3 N
a, A [2 —11:377 92 64|
= 174 -
M W | 11397 3 226
(10‘2)
K'w[g 1182 4 0. 6A]
a2, oI, FTA
Y | AR 17
(9[ ———+11- 331 +22:64 ,
7% 2w 7%

where ' A= 012 -+ 22- 631 i, 1128 i
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At r=0, I, = 127-6 (from table 3). Taking (dW/il,)/(0W/d],) to have the value 0-035
found by Rivlin & Saunders, equations (10-2) yield

d2),  —3k23[2—0-39 —22:64']

dr? 1-39+22-64'
(10-3)
d2, —1k2A3[2+0-39+22-64']
and 2 —
dr? 1-39+422-64’ ’
where A" = A|(OW/I,).

The experimental results for this value of A, indicate that d?A,/dr? and d?A,/dr? are both
negative at r = 0 and approximately equal. In order to obtain agreement with these results,
we must have for the rubber used in the experiments 4’~ —0-017. If we take the non-zero
value of 4’ to be due predominantly to the non-zero value of 92IW/dI2, we find that

(92WOI2) | (OW/OI,) ~ —1-35 x 10~

for the particular rubber employed. It is clear that the precise relationship between
d?4,/dr? and d?1,/dr? for this value of A depends very critically on the relation between
OW/dI, and A.

It has been pointed out in § 7 that so long as 02W/d13 or 02W[d1, d, are not zero, they may
be the controlling terms in determining the values of d?A,/dr? and d?4,/dr? at r = 0, given
by equations (7-15), for sufficiently large values of A on account of the large values of the
factors by which they are multiplied. We see, for example, that provided d2W/dI% is much
greater than $A~*dW/dI, and A-6dWdI,, d?A,/dr? and d2A,/ds? are given by

A

4 193
dr?2 dr-’-_‘*K/l'

Now, in the experimental curves for which A = 5-9, the factors 3A~* and 476 are about
4 x 10~*and 2-4 x 1073 respectively, so even exceedingly small values of 92W/d12 would make
A the controlling term in equations (7-15). This is the case a _fortiori for the curves for which
A = 6-7, and it is therefore hardly surprising that the values of d?A,/dr? and d?1,/dr? obtained
experimentally for these values of A are equal in magnitude and opposite in sign, the 4, —r
curve being convex and the 4,—7 curve concave to the r-axis.

It appears then that the experimental curves for which A = 1-49 represent a situation in
which 4 has a negligible effect in determining the values of d?A,/dr, and d%A,/dr? at r = 0.
In the case when A = 3:36, the behaviour is determined by a balance between the values of
dW |01, and A while in the cases when A = 5-9 and 6-7, the terms 4 in equations (7-15) have
become controlling. The curves for which A = 4-7 and 5:35 presumably represent inter-
mediate cases.

A FURTHER APPLICATION OF THE THEORY

11. INFLATION OF A SPHERICAL SHELL -

The problem of the relation between the pressure necessary to inflate a thick spherical
shell of incompressible highly elastic material, isotropic in its undeformed state, and the
amount of inflation has been solved by Green & Shield (1950). They have obtained from

Vor. 244. A. 69


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

530 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

their results the following formula for the internal pressure P required to inflate a thin shell
of the material of initial thickness % and radius @ (such that Z<a) to a radius Aa:

=40 BE ), o
where I is the stored-energy function for the material.

This result can, of course, be obtained by application of the equations given in §§ 3 and 4
of this paper, or more directly from the consideration that in the deformed spherical shell
each element of the shell is in a state of pure homogeneous deformation, the extension ratios
being A in any direction tangential to the shell and 1/A% in the radial direction.

The normal component of stress ¢ in any direction tangential to the shell is thus given
(Rivlin 19485) by L\ 0W W

~39) G 52 )-

The thickness of the shell in its deformed state is 2/A%, so that 7, the tension in the shell,
per unit element of length on it, measured in the deformed state, is given by

T=~/2£(/12»~%) (%ﬁ—’ﬂ%%j). | (11-3)

From this equation and the relation P = 27/ad we obtain the result (11-1). Green &
Shield have pointed out that if the stored-energy function W for the material has the form
(5-11), suggested by Mooney, with C; = 0, then P increases monotonically with A. On the
other hand, if C, = 0, so that the material is of the incompressible, neo-Hookean type, then
P has a maximum when A = /7.

Figure 12 shows the relation between Pa/(42dW/dl,) and A obtained from (11-1) if W is
considered to vary with /; and 7, in the manner found experimentally by Rivlin & Saunders
(1951) for a particular vulcanizate of natural rubber. For comparison the results obtained
when the stored-energy function W has the Mooney form with I' = 0, 0-1 and 0-5 are also
shown. '

It is seen that when W has the form determined experimentally by Rivlin & Saunders,
the pressure rises with inflation at first, then falls with further inflation, finally rising again
slowly at high values of . The same type of behaviour obtains if the material has a stored-
energy function of the Mooney form with I" = 0-1, but the fall in pressure is much less pro-
nounced than in the previous case. This contrasts with the behaviour of the plane diaphragm
during inflation where, for I' = 0-1, P increases monotonically with A. This difference in
behaviour is to be expected, since the relation P = 2«7 shows that for a given value of 4,
P is proportional to the curvature of the inflated sheet. In the region in which the fall in
pressure occurs for the spherical shell, i.e. A = 1-5 to 3-0 approximately, the curvature of
the shell is roughly halved, whereas for the plane diaphragm it can be seen from figure 6
that the fall in the value of the curvature at the pole is much smaller.

Since the fall in P during the inflation of a spherical shell is more pronounced in the case
of a stored-energy function having the form determined experimentally by Rivlin &
Saunders than in that of a Mooney form with I" = 0-1, the foregoing results are not incon-
sistent with the fall in pressure observed experimentally by Rivlin & Saunders (1951) when
a rubber diaphragm is inflated.

— 2(,12 (11-2)
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In principle the value of A for which P has a stationary value may be obtained analytically
by solving the equation dP/dA = 0. If W has the Mooney form (5:11) we obtain

a dP 1 7 5 ;
P e R (oL (-4
which yields, with I' = C,/C; and x = 22,
Dat— 234 50%+7 = 0. (11-5)

By Descartes’s rule of signs, we see that if I'>0 equation (11-5) cannot have more than
two real positive roots, so that there are at most two positive values of A for which P has
a stationary value. If C, and C, are both positive it is evident from equation (11-4) that
dP/dA is positive for A = 1 and also for sufficiently large values of A. In order that P may
rise to a maximum and then fall as A increases, dP/dA must become negative for some value
of A>1. This implies that for some value of x>1 we must have

J(x)>T,
where Cflx) = xiff% . (11-6)

This is possible only if I' is less than the maximum value which f{x) can attain. Solving
df/dx = 0, we see that f{*) has a maximum value of 0-21 (approximately) when x = 3-39,
i.e. when 1 = 1-84. Hence, if the material of the spherical shell has a stored-energy function
of the Mooney form with I'>>0-21, the pressure will increase monotonically with inflation.
If I'<0-21, an initial rise in pressure will be followed by a fall as the inflation proceeds,
before the pressure commences to rise again at high degrees of inflation.

This work forms part of a programme of research undertaken by the Board of the British
Rubber Producers’ Research Association and was carried out in the Davy Faraday Labora-
tory of the Royal Institution. The authors’ thanks are due to Dr L. R. G. Treloar for access
to unpublished details of his experimental results and for valuable discussions.
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